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ABSTRACT

The agricultural sector faces unprecedented 21st-century challenges due to climate change, resource
limitations, and a growing global population. Developing high-yielding, stress-resilient, and
nutrient-rich crops has become more critical than ever. Accurate, high-throughput phenotyping,
quantifying plant traits that reflect genetic and environmental interactions, is essential for
accelerating crop improvement. Traditional phenotyping methods are labor-intensive,
time-consuming, and prone to human error. Advances in artificial intelligence (Al), particularly deep
learning, are revolutionizing plant phenotyping by leveraging imaging technologies such as RGB,
hyperspectral, thermal, and 3D systems. These tools enable automated, precise analysis of complex
traits at scale. This review highlights Al-driven phenotyping approaches in crop breeding, with
emphasis on convolutional neural networks (CNNs), vision transformers, and multi-modal learning
through UAVs, ground-based platforms, and integrated sensor arrays. Key applications include early
disease detection, biomass estimation, canopy modeling, and yield prediction. Integrating
phenotypic, genotypic, and environmental data using Al will significantly enhance genomic
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selection, driving more efficient and sustainable crop breeding strategies.

Introduction

Crop improvement has always been fundamental to agricultural
development and food security. However, the complexity and
urgency of current agricultural challenges demand a paradigm
shift in how breeding programs are executed. With the global
population projected to exceed 9.7 billion by 2050 and
agricultural land and water resources becoming increasingly
constrained, the demand for high-yielding, stress-tolerant, and
climate-resilient crops has never been greater [1].
Compounding these demands are the unpredictable effects of
climate change, including altered rainfall patterns, rising
temperatures, and increased pest and disease pressures.

While the advent of next-generation sequencing (NGS),
marker-assisted selection (MAS), and genomic selection (GS)
has accelerated the identification of favorable alleles and genes,
breeding success ultimately hinges on the accurate evaluation of
plant phenotypes, the physical and physiological traits that
result from  genotype-environment interactions  [2].
Phenotyping, however, remains a major bottleneck in crop
improvement. Traditional methods of measuring plant traits,
whether in greenhouses or field conditions, are typically slow,
manual, and error-prone. Such limitations hinder the
throughput and objectivity required for modern breeding
programs, especially when screening thousands of genotypes
across multiple environments [3].

To address these limitations, the field of high-throughput
phenotyping (HTP) has evolved, integrating remote sensing,
sensor networks, robotics, and informatics to scale data
acquisition. Yet, the full potential of HTP is being realized only

now with the advent of artificial intelligence (AI), particularly
deep learning. AI algorithms have the capacity to analyze large,
complex, and noisy datasets with a high degree of precision,
making them well-suited for automated trait extraction from
diverse imaging modalities.

Deep learning models, especially convolutional neural
networks (CNNs), can learn intricate patterns from images
without requiring manual feature engineering. These
capabilities have enabled breakthroughs in automated detection
of diseases, prediction of yield traits, classification of growth
stages, and even estimation of plant biomass [4]. Emerging
technologies like vision transformers, generative adversarial
networks (GANSs), and graph neural networks (GNNs) are
further expanding AI's potential in multi-modal and
spatio-temporal phenotypic analysis [5].

Moreover, Als synergy with modern imaging systems, such
as hyperspectral sensors, LIDAR scanners, thermal cameras,
and UAVs (unmanned aerial vehicles), has unlocked new
frontiers in field-based phenotyping. These tools enable
real-time monitoring of large breeding plots, capturing subtle
physiological signals and dynamic developmental changes that
are otherwise undetectable [6]. This review presents a
comprehensive overview of how AI and advanced imaging
technologies are transforming crop phenotyping. It highlights
the major platforms, models, and applications being deployed
and how they are reshaping the efficiency, scale, and accuracy of
modern crop breeding.
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Imaging Technologies in Modern Phenotyping

The success of AI in phenotyping hinges on the quality,
resolution, and diversity of image data obtained from multiple
imaging platforms. Each imaging modality captures unique
physiological, morphological, or biochemical aspects of plant
development. The integration of multiple imaging types across
time points and spatial scales allows for the development of
holistic phenotyping pipelines capable of tracking dynamic crop
performance [7].

RGB imaging

RGB imaging is the foundation of most phenotyping systems
due to its affordability and ease of use. Modern RGB cameras
can capture high-resolution images under controlled or field
conditions, allowing visual assessment of traits such as leaf
number, plant height, color changes, and damage from pests or
diseases [8]. With proper calibration and lighting conditions,
RGB imaging has been shown to be effective in detecting early
signs of leaf senescence, chlorosis, and necrosis. AI models,
especially CNN, are often trained on RGB datasets to classify
disease symptoms, segment plant organs, or count structures
such as flowers or seed pods [9].

Hyperspectral imaging (HSI)

Hyperspectral imaging captures data across hundreds of narrow
spectral bands, typically ranging from the visible (400-700 nm)
to near-infrared (700-1100 nm) and shortwave infrared
regions. This allows detailed characterization of plant
biochemistry, such as pigment content, water status, and
nutrient deficiencies. Unlike RGB, which provides limited color
information, HSI can detect subtle spectral signatures indicative
of physiological stress even before visual symptoms appear [10].

HSI is particularly valuable for identifying biotic and
abiotic stress responses. AT models such as 1D and 3D CNNg,
support vector machines (SVMs), and ensemble classifiers have
been trained to interpret hyperspectral data for classification
tasks. These models help identify disease infections (e.g.,
powdery mildew in wheat), nitrogen deficiency, and water stress
with high precision [11].

Thermal imaging

Thermal cameras detect infrared radiation emitted by plant
surfaces, translating it into temperature maps. Since plant
transpiration cools leaf surfaces, canopy temperature is often
inversely related to stomatal conductance and water availability.
Thermal imaging can thus detect drought stress or stomatal
closure far earlier than visual cues can [12].

Thermal data are commonly used to compute indices like
the Crop Water Stress Index (CWSI) or used directly in Al
models for trait prediction. For instance, deep neural networks
have been trained on thermal data to assess heat tolerance in
wheat and maize, identifying cultivars that maintain cooler
canopies under heat stress [13].

Imaging and LiDAR

Three-dimensional imaging provides detailed structural data on
plant architecture. LiDAR systems emit laser pulses and
measure the return time to reconstruct 3D point clouds. These

models can assess traits such as plant height, canopy volume,
internode spacing, and biomass [14].

Stereo imaging and structured light systems are alternatives
to LiDAR and are often used in indoor phenotyping platforms.
The output from 3D imaging can be further analyzed using
computer vision algorithms or AI models for dynamic growth
modeling. Studies using 3D LiDAR have been able to monitor
changes in canopy structure over time to predict yield potential
in rice and maize fields [15].

UAV and satellite imaging

Unmanned Aerial Vehicles (UAVs), or drones, equipped with
RGB, multispectral, or thermal sensors, offer cost-effective,
scalable phenotyping tools for field trials. These platforms allow
the collection of high-resolution data over hundreds of plots
within minutes [16]. Compared to ground-based systems, UAV's
provide a bird’s-eye view that captures spatial variability in
canopy structure, chlorophyll content, and stress gradients.
Satellites offer similar advantages over larger scales, although
with lower spatial resolution. Integrating satellite-based data
with AI has shown promise in regional yield forecasting, crop
mapping, and disease outbreak prediction [17]. In breeding
contexts, UAVs are routinely used for canopy cover estimation,
flowering detection, and growth monitoring using Al-based
image segmentation and regression techniques [18].

Deep Learning Models for Image-Based Phenotyping

AT algorithms play a critical role in extracting and interpreting
phenotypic features from diverse image data. Deep learning
models, particularly convolutional neural networks (CNNs),
excel at recognizing patterns in high-dimensional and noisy
datasets, making them well-suited for real-world agricultural
applications [19].

Convolutional neural networks (CNNs)

CNNs are among the most widely used deep learning
architectures in plant phenotyping. They are composed of
convolutional layers that automatically extract hierarchical
features, starting from edges and textures to complex shapes and
spatial patterns. CNNs eliminate the need for manual feature
engineering, which is time-consuming and error-prone [20].

These models are used for:

o Disease detection: Classifying various plant diseases with
high precision

« Segmentation tasks: Delineating leaves, roots, stems, or
fruits from complex backgrounds

o Trait estimation: Predicting plant height, leaf area index,
or biomass from aerial or ground images

Vision transformers and attention models

Transformers, initially designed for language processing, have
recently been adapted for computer vision tasks. Vision
transformers (ViTs) treat images as sequences of patches and
use self-attention to model relationships between different parts
of an image.

In phenotyping, ViTs are particularly effective in:

« Integrating multi-source data (e.g., imagery, weather, genotype)
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 Handling variable input resolutions
 Understanding global context within field-scale images

Attention mechanisms enable the model to "focus” on
relevant image regions, improving interpretability and
performance in complex environments [21].

Generative adversarial networks (GANs) and synthetic
data

GANES are used for creating synthetic images that resemble real
plant images, helping in data augmentation for training robust
models. They are particularly useful when real datasets are
limited or imbalanced. GANs have also been used to simulate
rare stress conditions, generate phenotypic diversity, and
explore genotype-phenotype spaces virtually. By enriching
datasets with diverse synthetic images, GANs help mitigate
overfitting and improve model generalizability across
environments [22].

Applications in Crop Breeding and Trait Selection

Al-powered phenotyping is already being used in breeding
pipelines to accelerate selection, improve genetic gain, and
reduce breeding cycle time. Below are key application areas:

Disease detection and resistance screening

Al models trained on large image datasets can classify plant
diseases with remarkable accuracy. Tools developed using
CNNs and HSI have been successfully deployed to detect early
signs of foliar diseases like wheat rust, soybean blight, and
maize leaf spot. Early detection enables breeders to evaluate
resistance without waiting for full symptom expression,
increasing the selection accuracy. Moreover, hyperspectral
imaging coupled with AI allows discrimination between
different pathogens based on spectral fingerprints, even under
overlapping symptoms [23].

Monitoring of growth and developmental stages

Phenological traits such as flowering time, maturity, and growth
rate are crucial for climate adaptation. AI models analyze
time-series data from UAVs or ground cameras to track
developmental changes. Automated monitoring of growth
curves allows breeders to assess trait stability across
environments and select genotypes with optimal phenology.
Additionally, AI can detect abnormalities in development, such
as delayed flowering or asynchronous tillering, that may not be
obvious in manual observation [24].

Structural trait measurement and biomass estimation

Accurate estimation of biomass, plant height, and canopy
volume is critical in breeding for yield and stress tolerance. Al
models, especially those trained on 3D LiDAR or UAV images,
can estimate these traits non-destructively. In rice, maize, and
sorghum, biomass estimation using AI has been correlated with
final grain yield, making it a useful proxy for early-stage
selection [25].

Root architecture analysis

Root traits like length, branching pattern, and angle are
important for water and nutrient uptake but difficult to
phenotype. Al-powered segmentation and skeletonization

techniques can extract these traits from rhizotron images or soil
profile scans. These data inform breeding decisions for drought
tolerance and efficient resource use.

Conclusion

Al-powered phenotyping marks a transformative shift in plant
science and crop breeding, enabling researchers to analyze
complex plant traits with unmatched speed, accuracy, and scale.
By integrating artificial intelligence with advanced imaging
technologies, such as drones, hyperspectral cameras, and 3D
scanners, it significantly reduces the time and labor associated
with traditional manual phenotyping, resolving a key bottleneck
in breeding pipelines.

Deep learning models, especially convolutional neural
networks (CNNs), vision transformers (ViTs), and generative
approaches—have proven highly effective in extracting
meaningful  biological  information from  complex,
high-dimensional datasets. These models excel under
real-world conditions, handling variability, noise, and
incomplete data to assess traits like disease presence, canopy
structure, biomass, and root development in real time.

A key advancement lies in integrating phenomic, genomic,
and environmental data to support predictive breeding and
improve genotype-by-environment interaction models. This
facilitates more accurate genomic selection, essential for
addressing climate-induced stresses such as drought, salinity,
and heat. Accessibility is also expanding, with affordable UAVs,
open-source tools, and edge computing making AI-powered
phenotyping feasible even for resource-constrained regions.
This democratization is vital for bridging yield gaps in
smallholder agriculture.

Ultimately, AI enhances, not replaces, the role of plant
breeders. With collaborative, interdisciplinary efforts and
standardized frameworks, AI-powered phenotyping will drive
more efficient, resilient, and sustainable crop improvement
globally.
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