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The agricultural sector faces unprecedented 21st-century challenges due to climate change, resource 
limitations, and a growing global population. Developing high-yielding, stress-resilient, and 
nutrient-rich crops has become more critical than ever. Accurate, high-throughput phenotyping, 
quantifying plant traits that re�ect genetic and environmental interactions, is essential for 
accelerating crop improvement. Traditional phenotyping methods are labor-intensive, 
time-consuming, and prone to human error. Advances in arti�cial intelligence (AI), particularly deep 
learning, are revolutionizing plant phenotyping by leveraging imaging technologies such as RGB, 
hyperspectral, thermal, and 3D systems. These tools enable automated, precise analysis of complex 
traits at scale. This review highlights AI-driven phenotyping approaches in crop breeding, with 
emphasis on convolutional neural networks (CNNs), vision transformers, and multi-modal learning 
through UAVs, ground-based platforms, and integrated sensor arrays. Key applications include early 
disease detection, biomass estimation, canopy modeling, and yield prediction. Integrating 
phenotypic, genotypic, and environmental data using AI will signi�cantly enhance genomic 
selection, driving more e�cient and sustainable crop breeding strategies. 
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Crop improvement has always been fundamental to agricultural 
development and food security. However, the complexity and 
urgency of current agricultural challenges demand a paradigm 
shi� in how breeding programs are executed. With the global 
population projected to exceed 9.7 billion by 2050 and 
agricultural land and water resources becoming increasingly 
constrained, the demand for high-yielding, stress-tolerant, and 
climate-resilient crops has never been greater [1]. 
Compounding these demands are the unpredictable e�ects of 
climate change, including altered rainfall patterns, rising 
temperatures, and increased pest and disease pressures.

 While the advent of next-generation sequencing (NGS), 
marker-assisted selection (MAS), and genomic selection (GS) 
has accelerated the identi�cation of favorable alleles and genes, 
breeding success ultimately hinges on the accurate evaluation of 
plant phenotypes, the physical and physiological traits that 
result from genotype–environment interactions [2]. 
Phenotyping, however, remains a major bottleneck in crop 
improvement. Traditional methods of measuring plant traits, 
whether in greenhouses or �eld conditions, are typically slow, 
manual, and error-prone. Such limitations hinder the 
throughput and objectivity required for modern breeding 
programs, especially when screening thousands of genotypes 
across multiple environments [3].

 To address these limitations, the �eld of high-throughput 
phenotyping (HTP) has evolved, integrating remote sensing, 
sensor networks, robotics, and informatics to scale data 
acquisition. Yet, the full potential of HTP is being realized only 

now with the advent of arti�cial intelligence (AI), particularly 
deep learning. AI algorithms have the capacity to analyze large, 
complex, and noisy datasets with a high degree of precision, 
making them well-suited for automated trait extraction from 
diverse imaging modalities.

 Deep learning models, especially convolutional neural 
networks (CNNs), can learn intricate patterns from images 
without requiring manual feature engineering. �ese 
capabilities have enabled breakthroughs in automated detection 
of diseases, prediction of yield traits, classi�cation of growth 
stages, and even estimation of plant biomass [4]. Emerging 
technologies like vision transformers, generative adversarial 
networks (GANs), and graph neural networks (GNNs) are 
further expanding AI's potential in multi-modal and 
spatio-temporal phenotypic analysis [5].

 Moreover, AI’s synergy with modern imaging systems, such 
as hyperspectral sensors, LiDAR scanners, thermal cameras, 
and UAVs (unmanned aerial vehicles), has unlocked new 
frontiers in �eld-based phenotyping. �ese tools enable 
real-time monitoring of large breeding plots, capturing subtle 
physiological signals and dynamic developmental changes that 
are otherwise undetectable [6]. �is review presents a 
comprehensive overview of how AI and advanced imaging 
technologies are transforming crop phenotyping. It highlights 
the major platforms, models, and applications being deployed 
and how they are reshaping the e�ciency, scale, and accuracy of 
modern crop breeding.

Imaging Technologies in Modern Phenotyping
�e success of AI in phenotyping hinges on the quality, 
resolution, and diversity of image data obtained from multiple 
imaging platforms. Each imaging modality captures unique 
physiological, morphological, or biochemical aspects of plant 
development. �e integration of multiple imaging types across 
time points and spatial scales allows for the development of 
holistic phenotyping pipelines capable of tracking dynamic crop 
performance [7].

RGB imaging
RGB imaging is the foundation of most phenotyping systems 
due to its a�ordability and ease of use. Modern RGB cameras 
can capture high-resolution images under controlled or �eld 
conditions, allowing visual assessment of traits such as leaf 
number, plant height, color changes, and damage from pests or 
diseases [8]. With proper calibration and lighting conditions, 
RGB imaging has been shown to be e�ective in detecting early 
signs of leaf senescence, chlorosis, and necrosis. AI models, 
especially CNNs, are o�en trained on RGB datasets to classify 
disease symptoms, segment plant organs, or count structures 
such as �owers or seed pods [9].

Hyperspectral imaging (HSI)
Hyperspectral imaging captures data across hundreds of narrow 
spectral bands, typically ranging from the visible (400–700 nm) 
to near-infrared (700–1100 nm) and shortwave infrared 
regions. �is allows detailed characterization of plant 
biochemistry, such as pigment content, water status, and 
nutrient de�ciencies. Unlike RGB, which provides limited color 
information, HSI can detect subtle spectral signatures indicative 
of physiological stress even before visual symptoms appear [10].

 HSI is particularly valuable for identifying biotic and 
abiotic stress responses. AI models such as 1D and 3D CNNs, 
support vector machines (SVMs), and ensemble classi�ers have 
been trained to interpret hyperspectral data for classi�cation 
tasks. �ese models help identify disease infections (e.g., 
powdery mildew in wheat), nitrogen de�ciency, and water stress 
with high precision [11].

Thermal imaging
�ermal cameras detect infrared radiation emitted by plant 
surfaces, translating it into temperature maps. Since plant 
transpiration cools leaf surfaces, canopy temperature is o�en 
inversely related to stomatal conductance and water availability. 
�ermal imaging can thus detect drought stress or stomatal 
closure far earlier than visual cues can [12].

 �ermal data are commonly used to compute indices like 
the Crop Water Stress Index (CWSI) or used directly in AI 
models for trait prediction. For instance, deep neural networks 
have been trained on thermal data to assess heat tolerance in 
wheat and maize, identifying cultivars that maintain cooler 
canopies under heat stress [13].

Imaging and LiDAR
�ree-dimensional imaging provides detailed structural data on 
plant architecture. LiDAR systems emit laser pulses and 
measure the return time to reconstruct 3D point clouds. �ese 

models can assess traits such as plant height, canopy volume, 
internode spacing, and biomass [14]. 

 Stereo imaging and structured light systems are alternatives 
to LiDAR and are o�en used in indoor phenotyping platforms. 
�e output from 3D imaging can be further analyzed using 
computer vision algorithms or AI models for dynamic growth 
modeling. Studies using 3D LiDAR have been able to monitor 
changes in canopy structure over time to predict yield potential 
in rice and maize �elds [15].

UAV and satellite imaging
Unmanned Aerial Vehicles (UAVs), or drones, equipped with 
RGB, multispectral, or thermal sensors, o�er cost-e�ective, 
scalable phenotyping tools for �eld trials. �ese platforms allow 
the collection of high-resolution data over hundreds of plots 
within minutes [16]. Compared to ground-based systems, UAVs 
provide a bird’s-eye view that captures spatial variability in 
canopy structure, chlorophyll content, and stress gradients.
Satellites o�er similar advantages over larger scales, although 
with lower spatial resolution. Integrating satellite-based data 
with AI has shown promise in regional yield forecasting, crop 
mapping, and disease outbreak prediction [17]. In breeding 
contexts, UAVs are routinely used for canopy cover estimation, 
�owering detection, and growth monitoring using AI-based 
image segmentation and regression techniques [18].

Deep Learning Models for Image-Based Phenotyping
AI algorithms play a critical role in extracting and interpreting 
phenotypic features from diverse image data. Deep learning 
models, particularly convolutional neural networks (CNNs), 
excel at recognizing patterns in high-dimensional and noisy 
datasets, making them well-suited for real-world agricultural 
applications [19].

Convolutional neural networks (CNNs)
CNNs are among the most widely used deep learning 
architectures in plant phenotyping. �ey are composed of 
convolutional layers that automatically extract hierarchical 
features, starting from edges and textures to complex shapes and 
spatial patterns. CNNs eliminate the need for manual feature 
engineering, which is time-consuming and error-prone [20].

�ese models are used for:

• Disease detection: Classifying various plant diseases with 
high precision

• Segmentation tasks: Delineating leaves, roots, stems, or 
fruits from complex backgrounds

• Trait estimation: Predicting plant height, leaf area index, 
or biomass from aerial or ground images

Vision transformers and attention models
Transformers, initially designed for language processing, have 
recently been adapted for computer vision tasks. Vision 
transformers (ViTs) treat images as sequences of patches and 
use self-attention to model relationships between di�erent parts 
of an image.

In phenotyping, ViTs are particularly e�ective in:

• Integrating multi-source data (e.g., imagery, weather, genotype)

• Handling variable input resolutions

• Understanding global context within �eld-scale images

 Attention mechanisms enable the model to "focus" on 
relevant image regions, improving interpretability and 
performance in complex environments [21].

Generative adversarial networks (GANs) and synthetic 
data
GANs are used for creating synthetic images that resemble real 
plant images, helping in data augmentation for training robust 
models. �ey are particularly useful when real datasets are 
limited or imbalanced. GANs have also been used to simulate 
rare stress conditions, generate phenotypic diversity, and 
explore genotype-phenotype spaces virtually. By enriching 
datasets with diverse synthetic images, GANs help mitigate 
over�tting and improve model generalizability across 
environments [22].

Applications in Crop Breeding and Trait Selection
AI-powered phenotyping is already being used in breeding 
pipelines to accelerate selection, improve genetic gain, and 
reduce breeding cycle time. Below are key application areas:

Disease detection and resistance screening
AI models trained on large image datasets can classify plant 
diseases with remarkable accuracy. Tools developed using 
CNNs and HSI have been successfully deployed to detect early 
signs of foliar diseases like wheat rust, soybean blight, and 
maize leaf spot. Early detection enables breeders to evaluate 
resistance without waiting for full symptom expression, 
increasing the selection accuracy. Moreover, hyperspectral 
imaging coupled with AI allows discrimination between 
di�erent pathogens based on spectral �ngerprints, even under 
overlapping symptoms [23].

Monitoring of growth and developmental stages
Phenological traits such as �owering time, maturity, and growth 
rate are crucial for climate adaptation. AI models analyze 
time-series data from UAVs or ground cameras to track 
developmental changes. Automated monitoring of growth 
curves allows breeders to assess trait stability across 
environments and select genotypes with optimal phenology. 
Additionally, AI can detect abnormalities in development, such 
as delayed �owering or asynchronous tillering, that may not be 
obvious in manual observation [24].

Structural trait measurement and biomass estimation
Accurate estimation of biomass, plant height, and canopy 
volume is critical in breeding for yield and stress tolerance. AI 
models, especially those trained on 3D LiDAR or UAV images, 
can estimate these traits non-destructively. In rice, maize, and 
sorghum, biomass estimation using AI has been correlated with 
�nal grain yield, making it a useful proxy for early-stage 
selection [25].

Root architecture analysis
Root traits like length, branching pattern, and angle are 
important for water and nutrient uptake but di�cult to 
phenotype. AI-powered segmentation and skeletonization 

techniques can extract these traits from rhizotron images or soil 
pro�le scans. �ese data inform breeding decisions for drought 
tolerance and e�cient resource use.

Conclusion
AI-powered phenotyping marks a transformative shi� in plant 
science and crop breeding, enabling researchers to analyze 
complex plant traits with unmatched speed, accuracy, and scale. 
By integrating arti�cial intelligence with advanced imaging 
technologies, such as drones, hyperspectral cameras, and 3D 
scanners, it signi�cantly reduces the time and labor associated 
with traditional manual phenotyping, resolving a key bottleneck 
in breeding pipelines.

 Deep learning models, especially convolutional neural 
networks (CNNs), vision transformers (ViTs), and generative 
approaches—have proven highly e�ective in extracting 
meaningful biological information from complex, 
high-dimensional datasets. �ese models excel under 
real-world conditions, handling variability, noise, and 
incomplete data to assess traits like disease presence, canopy 
structure, biomass, and root development in real time.

 A key advancement lies in integrating phenomic, genomic, 
and environmental data to support predictive breeding and 
improve genotype-by-environment interaction models. �is 
facilitates more accurate genomic selection, essential for 
addressing climate-induced stresses such as drought, salinity, 
and heat. Accessibility is also expanding, with a�ordable UAVs, 
open-source tools, and edge computing making AI-powered 
phenotyping feasible even for resource-constrained regions. 
�is democratization is vital for bridging yield gaps in 
smallholder agriculture.

 Ultimately, AI enhances, not replaces, the role of plant 
breeders. With collaborative, interdisciplinary e�orts and 
standardized frameworks, AI-powered phenotyping will drive 
more e�cient, resilient, and sustainable crop improvement 
globally.
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Crop improvement has always been fundamental to agricultural 
development and food security. However, the complexity and 
urgency of current agricultural challenges demand a paradigm 
shi� in how breeding programs are executed. With the global 
population projected to exceed 9.7 billion by 2050 and 
agricultural land and water resources becoming increasingly 
constrained, the demand for high-yielding, stress-tolerant, and 
climate-resilient crops has never been greater [1]. 
Compounding these demands are the unpredictable e�ects of 
climate change, including altered rainfall patterns, rising 
temperatures, and increased pest and disease pressures.

 While the advent of next-generation sequencing (NGS), 
marker-assisted selection (MAS), and genomic selection (GS) 
has accelerated the identi�cation of favorable alleles and genes, 
breeding success ultimately hinges on the accurate evaluation of 
plant phenotypes, the physical and physiological traits that 
result from genotype–environment interactions [2]. 
Phenotyping, however, remains a major bottleneck in crop 
improvement. Traditional methods of measuring plant traits, 
whether in greenhouses or �eld conditions, are typically slow, 
manual, and error-prone. Such limitations hinder the 
throughput and objectivity required for modern breeding 
programs, especially when screening thousands of genotypes 
across multiple environments [3].

 To address these limitations, the �eld of high-throughput 
phenotyping (HTP) has evolved, integrating remote sensing, 
sensor networks, robotics, and informatics to scale data 
acquisition. Yet, the full potential of HTP is being realized only 

now with the advent of arti�cial intelligence (AI), particularly 
deep learning. AI algorithms have the capacity to analyze large, 
complex, and noisy datasets with a high degree of precision, 
making them well-suited for automated trait extraction from 
diverse imaging modalities.

 Deep learning models, especially convolutional neural 
networks (CNNs), can learn intricate patterns from images 
without requiring manual feature engineering. �ese 
capabilities have enabled breakthroughs in automated detection 
of diseases, prediction of yield traits, classi�cation of growth 
stages, and even estimation of plant biomass [4]. Emerging 
technologies like vision transformers, generative adversarial 
networks (GANs), and graph neural networks (GNNs) are 
further expanding AI's potential in multi-modal and 
spatio-temporal phenotypic analysis [5].

 Moreover, AI’s synergy with modern imaging systems, such 
as hyperspectral sensors, LiDAR scanners, thermal cameras, 
and UAVs (unmanned aerial vehicles), has unlocked new 
frontiers in �eld-based phenotyping. �ese tools enable 
real-time monitoring of large breeding plots, capturing subtle 
physiological signals and dynamic developmental changes that 
are otherwise undetectable [6]. �is review presents a 
comprehensive overview of how AI and advanced imaging 
technologies are transforming crop phenotyping. It highlights 
the major platforms, models, and applications being deployed 
and how they are reshaping the e�ciency, scale, and accuracy of 
modern crop breeding.

Imaging Technologies in Modern Phenotyping
�e success of AI in phenotyping hinges on the quality, 
resolution, and diversity of image data obtained from multiple 
imaging platforms. Each imaging modality captures unique 
physiological, morphological, or biochemical aspects of plant 
development. �e integration of multiple imaging types across 
time points and spatial scales allows for the development of 
holistic phenotyping pipelines capable of tracking dynamic crop 
performance [7].

RGB imaging
RGB imaging is the foundation of most phenotyping systems 
due to its a�ordability and ease of use. Modern RGB cameras 
can capture high-resolution images under controlled or �eld 
conditions, allowing visual assessment of traits such as leaf 
number, plant height, color changes, and damage from pests or 
diseases [8]. With proper calibration and lighting conditions, 
RGB imaging has been shown to be e�ective in detecting early 
signs of leaf senescence, chlorosis, and necrosis. AI models, 
especially CNNs, are o�en trained on RGB datasets to classify 
disease symptoms, segment plant organs, or count structures 
such as �owers or seed pods [9].

Hyperspectral imaging (HSI)
Hyperspectral imaging captures data across hundreds of narrow 
spectral bands, typically ranging from the visible (400–700 nm) 
to near-infrared (700–1100 nm) and shortwave infrared 
regions. �is allows detailed characterization of plant 
biochemistry, such as pigment content, water status, and 
nutrient de�ciencies. Unlike RGB, which provides limited color 
information, HSI can detect subtle spectral signatures indicative 
of physiological stress even before visual symptoms appear [10].

 HSI is particularly valuable for identifying biotic and 
abiotic stress responses. AI models such as 1D and 3D CNNs, 
support vector machines (SVMs), and ensemble classi�ers have 
been trained to interpret hyperspectral data for classi�cation 
tasks. �ese models help identify disease infections (e.g., 
powdery mildew in wheat), nitrogen de�ciency, and water stress 
with high precision [11].

Thermal imaging
�ermal cameras detect infrared radiation emitted by plant 
surfaces, translating it into temperature maps. Since plant 
transpiration cools leaf surfaces, canopy temperature is o�en 
inversely related to stomatal conductance and water availability. 
�ermal imaging can thus detect drought stress or stomatal 
closure far earlier than visual cues can [12].

 �ermal data are commonly used to compute indices like 
the Crop Water Stress Index (CWSI) or used directly in AI 
models for trait prediction. For instance, deep neural networks 
have been trained on thermal data to assess heat tolerance in 
wheat and maize, identifying cultivars that maintain cooler 
canopies under heat stress [13].

Imaging and LiDAR
�ree-dimensional imaging provides detailed structural data on 
plant architecture. LiDAR systems emit laser pulses and 
measure the return time to reconstruct 3D point clouds. �ese 

models can assess traits such as plant height, canopy volume, 
internode spacing, and biomass [14]. 

 Stereo imaging and structured light systems are alternatives 
to LiDAR and are o�en used in indoor phenotyping platforms. 
�e output from 3D imaging can be further analyzed using 
computer vision algorithms or AI models for dynamic growth 
modeling. Studies using 3D LiDAR have been able to monitor 
changes in canopy structure over time to predict yield potential 
in rice and maize �elds [15].

UAV and satellite imaging
Unmanned Aerial Vehicles (UAVs), or drones, equipped with 
RGB, multispectral, or thermal sensors, o�er cost-e�ective, 
scalable phenotyping tools for �eld trials. �ese platforms allow 
the collection of high-resolution data over hundreds of plots 
within minutes [16]. Compared to ground-based systems, UAVs 
provide a bird’s-eye view that captures spatial variability in 
canopy structure, chlorophyll content, and stress gradients.
Satellites o�er similar advantages over larger scales, although 
with lower spatial resolution. Integrating satellite-based data 
with AI has shown promise in regional yield forecasting, crop 
mapping, and disease outbreak prediction [17]. In breeding 
contexts, UAVs are routinely used for canopy cover estimation, 
�owering detection, and growth monitoring using AI-based 
image segmentation and regression techniques [18].

Deep Learning Models for Image-Based Phenotyping
AI algorithms play a critical role in extracting and interpreting 
phenotypic features from diverse image data. Deep learning 
models, particularly convolutional neural networks (CNNs), 
excel at recognizing patterns in high-dimensional and noisy 
datasets, making them well-suited for real-world agricultural 
applications [19].

Convolutional neural networks (CNNs)
CNNs are among the most widely used deep learning 
architectures in plant phenotyping. �ey are composed of 
convolutional layers that automatically extract hierarchical 
features, starting from edges and textures to complex shapes and 
spatial patterns. CNNs eliminate the need for manual feature 
engineering, which is time-consuming and error-prone [20].

�ese models are used for:

• Disease detection: Classifying various plant diseases with 
high precision

• Segmentation tasks: Delineating leaves, roots, stems, or 
fruits from complex backgrounds

• Trait estimation: Predicting plant height, leaf area index, 
or biomass from aerial or ground images

Vision transformers and attention models
Transformers, initially designed for language processing, have 
recently been adapted for computer vision tasks. Vision 
transformers (ViTs) treat images as sequences of patches and 
use self-attention to model relationships between di�erent parts 
of an image.

In phenotyping, ViTs are particularly e�ective in:

• Integrating multi-source data (e.g., imagery, weather, genotype)

• Handling variable input resolutions

• Understanding global context within �eld-scale images

 Attention mechanisms enable the model to "focus" on 
relevant image regions, improving interpretability and 
performance in complex environments [21].

Generative adversarial networks (GANs) and synthetic 
data
GANs are used for creating synthetic images that resemble real 
plant images, helping in data augmentation for training robust 
models. �ey are particularly useful when real datasets are 
limited or imbalanced. GANs have also been used to simulate 
rare stress conditions, generate phenotypic diversity, and 
explore genotype-phenotype spaces virtually. By enriching 
datasets with diverse synthetic images, GANs help mitigate 
over�tting and improve model generalizability across 
environments [22].

Applications in Crop Breeding and Trait Selection
AI-powered phenotyping is already being used in breeding 
pipelines to accelerate selection, improve genetic gain, and 
reduce breeding cycle time. Below are key application areas:

Disease detection and resistance screening
AI models trained on large image datasets can classify plant 
diseases with remarkable accuracy. Tools developed using 
CNNs and HSI have been successfully deployed to detect early 
signs of foliar diseases like wheat rust, soybean blight, and 
maize leaf spot. Early detection enables breeders to evaluate 
resistance without waiting for full symptom expression, 
increasing the selection accuracy. Moreover, hyperspectral 
imaging coupled with AI allows discrimination between 
di�erent pathogens based on spectral �ngerprints, even under 
overlapping symptoms [23].

Monitoring of growth and developmental stages
Phenological traits such as �owering time, maturity, and growth 
rate are crucial for climate adaptation. AI models analyze 
time-series data from UAVs or ground cameras to track 
developmental changes. Automated monitoring of growth 
curves allows breeders to assess trait stability across 
environments and select genotypes with optimal phenology. 
Additionally, AI can detect abnormalities in development, such 
as delayed �owering or asynchronous tillering, that may not be 
obvious in manual observation [24].

Structural trait measurement and biomass estimation
Accurate estimation of biomass, plant height, and canopy 
volume is critical in breeding for yield and stress tolerance. AI 
models, especially those trained on 3D LiDAR or UAV images, 
can estimate these traits non-destructively. In rice, maize, and 
sorghum, biomass estimation using AI has been correlated with 
�nal grain yield, making it a useful proxy for early-stage 
selection [25].

Root architecture analysis
Root traits like length, branching pattern, and angle are 
important for water and nutrient uptake but di�cult to 
phenotype. AI-powered segmentation and skeletonization 

techniques can extract these traits from rhizotron images or soil 
pro�le scans. �ese data inform breeding decisions for drought 
tolerance and e�cient resource use.

Conclusion
AI-powered phenotyping marks a transformative shi� in plant 
science and crop breeding, enabling researchers to analyze 
complex plant traits with unmatched speed, accuracy, and scale. 
By integrating arti�cial intelligence with advanced imaging 
technologies, such as drones, hyperspectral cameras, and 3D 
scanners, it signi�cantly reduces the time and labor associated 
with traditional manual phenotyping, resolving a key bottleneck 
in breeding pipelines.

 Deep learning models, especially convolutional neural 
networks (CNNs), vision transformers (ViTs), and generative 
approaches—have proven highly e�ective in extracting 
meaningful biological information from complex, 
high-dimensional datasets. �ese models excel under 
real-world conditions, handling variability, noise, and 
incomplete data to assess traits like disease presence, canopy 
structure, biomass, and root development in real time.

 A key advancement lies in integrating phenomic, genomic, 
and environmental data to support predictive breeding and 
improve genotype-by-environment interaction models. �is 
facilitates more accurate genomic selection, essential for 
addressing climate-induced stresses such as drought, salinity, 
and heat. Accessibility is also expanding, with a�ordable UAVs, 
open-source tools, and edge computing making AI-powered 
phenotyping feasible even for resource-constrained regions. 
�is democratization is vital for bridging yield gaps in 
smallholder agriculture.

 Ultimately, AI enhances, not replaces, the role of plant 
breeders. With collaborative, interdisciplinary e�orts and 
standardized frameworks, AI-powered phenotyping will drive 
more e�cient, resilient, and sustainable crop improvement 
globally.
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Crop improvement has always been fundamental to agricultural 
development and food security. However, the complexity and 
urgency of current agricultural challenges demand a paradigm 
shi� in how breeding programs are executed. With the global 
population projected to exceed 9.7 billion by 2050 and 
agricultural land and water resources becoming increasingly 
constrained, the demand for high-yielding, stress-tolerant, and 
climate-resilient crops has never been greater [1]. 
Compounding these demands are the unpredictable e�ects of 
climate change, including altered rainfall patterns, rising 
temperatures, and increased pest and disease pressures.

 While the advent of next-generation sequencing (NGS), 
marker-assisted selection (MAS), and genomic selection (GS) 
has accelerated the identi�cation of favorable alleles and genes, 
breeding success ultimately hinges on the accurate evaluation of 
plant phenotypes, the physical and physiological traits that 
result from genotype–environment interactions [2]. 
Phenotyping, however, remains a major bottleneck in crop 
improvement. Traditional methods of measuring plant traits, 
whether in greenhouses or �eld conditions, are typically slow, 
manual, and error-prone. Such limitations hinder the 
throughput and objectivity required for modern breeding 
programs, especially when screening thousands of genotypes 
across multiple environments [3].

 To address these limitations, the �eld of high-throughput 
phenotyping (HTP) has evolved, integrating remote sensing, 
sensor networks, robotics, and informatics to scale data 
acquisition. Yet, the full potential of HTP is being realized only 

now with the advent of arti�cial intelligence (AI), particularly 
deep learning. AI algorithms have the capacity to analyze large, 
complex, and noisy datasets with a high degree of precision, 
making them well-suited for automated trait extraction from 
diverse imaging modalities.

 Deep learning models, especially convolutional neural 
networks (CNNs), can learn intricate patterns from images 
without requiring manual feature engineering. �ese 
capabilities have enabled breakthroughs in automated detection 
of diseases, prediction of yield traits, classi�cation of growth 
stages, and even estimation of plant biomass [4]. Emerging 
technologies like vision transformers, generative adversarial 
networks (GANs), and graph neural networks (GNNs) are 
further expanding AI's potential in multi-modal and 
spatio-temporal phenotypic analysis [5].

 Moreover, AI’s synergy with modern imaging systems, such 
as hyperspectral sensors, LiDAR scanners, thermal cameras, 
and UAVs (unmanned aerial vehicles), has unlocked new 
frontiers in �eld-based phenotyping. �ese tools enable 
real-time monitoring of large breeding plots, capturing subtle 
physiological signals and dynamic developmental changes that 
are otherwise undetectable [6]. �is review presents a 
comprehensive overview of how AI and advanced imaging 
technologies are transforming crop phenotyping. It highlights 
the major platforms, models, and applications being deployed 
and how they are reshaping the e�ciency, scale, and accuracy of 
modern crop breeding.

Imaging Technologies in Modern Phenotyping
�e success of AI in phenotyping hinges on the quality, 
resolution, and diversity of image data obtained from multiple 
imaging platforms. Each imaging modality captures unique 
physiological, morphological, or biochemical aspects of plant 
development. �e integration of multiple imaging types across 
time points and spatial scales allows for the development of 
holistic phenotyping pipelines capable of tracking dynamic crop 
performance [7].

RGB imaging
RGB imaging is the foundation of most phenotyping systems 
due to its a�ordability and ease of use. Modern RGB cameras 
can capture high-resolution images under controlled or �eld 
conditions, allowing visual assessment of traits such as leaf 
number, plant height, color changes, and damage from pests or 
diseases [8]. With proper calibration and lighting conditions, 
RGB imaging has been shown to be e�ective in detecting early 
signs of leaf senescence, chlorosis, and necrosis. AI models, 
especially CNNs, are o�en trained on RGB datasets to classify 
disease symptoms, segment plant organs, or count structures 
such as �owers or seed pods [9].

Hyperspectral imaging (HSI)
Hyperspectral imaging captures data across hundreds of narrow 
spectral bands, typically ranging from the visible (400–700 nm) 
to near-infrared (700–1100 nm) and shortwave infrared 
regions. �is allows detailed characterization of plant 
biochemistry, such as pigment content, water status, and 
nutrient de�ciencies. Unlike RGB, which provides limited color 
information, HSI can detect subtle spectral signatures indicative 
of physiological stress even before visual symptoms appear [10].

 HSI is particularly valuable for identifying biotic and 
abiotic stress responses. AI models such as 1D and 3D CNNs, 
support vector machines (SVMs), and ensemble classi�ers have 
been trained to interpret hyperspectral data for classi�cation 
tasks. �ese models help identify disease infections (e.g., 
powdery mildew in wheat), nitrogen de�ciency, and water stress 
with high precision [11].

Thermal imaging
�ermal cameras detect infrared radiation emitted by plant 
surfaces, translating it into temperature maps. Since plant 
transpiration cools leaf surfaces, canopy temperature is o�en 
inversely related to stomatal conductance and water availability. 
�ermal imaging can thus detect drought stress or stomatal 
closure far earlier than visual cues can [12].

 �ermal data are commonly used to compute indices like 
the Crop Water Stress Index (CWSI) or used directly in AI 
models for trait prediction. For instance, deep neural networks 
have been trained on thermal data to assess heat tolerance in 
wheat and maize, identifying cultivars that maintain cooler 
canopies under heat stress [13].

Imaging and LiDAR
�ree-dimensional imaging provides detailed structural data on 
plant architecture. LiDAR systems emit laser pulses and 
measure the return time to reconstruct 3D point clouds. �ese 

models can assess traits such as plant height, canopy volume, 
internode spacing, and biomass [14]. 

 Stereo imaging and structured light systems are alternatives 
to LiDAR and are o�en used in indoor phenotyping platforms. 
�e output from 3D imaging can be further analyzed using 
computer vision algorithms or AI models for dynamic growth 
modeling. Studies using 3D LiDAR have been able to monitor 
changes in canopy structure over time to predict yield potential 
in rice and maize �elds [15].

UAV and satellite imaging
Unmanned Aerial Vehicles (UAVs), or drones, equipped with 
RGB, multispectral, or thermal sensors, o�er cost-e�ective, 
scalable phenotyping tools for �eld trials. �ese platforms allow 
the collection of high-resolution data over hundreds of plots 
within minutes [16]. Compared to ground-based systems, UAVs 
provide a bird’s-eye view that captures spatial variability in 
canopy structure, chlorophyll content, and stress gradients.
Satellites o�er similar advantages over larger scales, although 
with lower spatial resolution. Integrating satellite-based data 
with AI has shown promise in regional yield forecasting, crop 
mapping, and disease outbreak prediction [17]. In breeding 
contexts, UAVs are routinely used for canopy cover estimation, 
�owering detection, and growth monitoring using AI-based 
image segmentation and regression techniques [18].

Deep Learning Models for Image-Based Phenotyping
AI algorithms play a critical role in extracting and interpreting 
phenotypic features from diverse image data. Deep learning 
models, particularly convolutional neural networks (CNNs), 
excel at recognizing patterns in high-dimensional and noisy 
datasets, making them well-suited for real-world agricultural 
applications [19].

Convolutional neural networks (CNNs)
CNNs are among the most widely used deep learning 
architectures in plant phenotyping. �ey are composed of 
convolutional layers that automatically extract hierarchical 
features, starting from edges and textures to complex shapes and 
spatial patterns. CNNs eliminate the need for manual feature 
engineering, which is time-consuming and error-prone [20].

�ese models are used for:

• Disease detection: Classifying various plant diseases with 
high precision

• Segmentation tasks: Delineating leaves, roots, stems, or 
fruits from complex backgrounds

• Trait estimation: Predicting plant height, leaf area index, 
or biomass from aerial or ground images

Vision transformers and attention models
Transformers, initially designed for language processing, have 
recently been adapted for computer vision tasks. Vision 
transformers (ViTs) treat images as sequences of patches and 
use self-attention to model relationships between di�erent parts 
of an image.

In phenotyping, ViTs are particularly e�ective in:

• Integrating multi-source data (e.g., imagery, weather, genotype)

• Handling variable input resolutions

• Understanding global context within �eld-scale images

 Attention mechanisms enable the model to "focus" on 
relevant image regions, improving interpretability and 
performance in complex environments [21].

Generative adversarial networks (GANs) and synthetic 
data
GANs are used for creating synthetic images that resemble real 
plant images, helping in data augmentation for training robust 
models. �ey are particularly useful when real datasets are 
limited or imbalanced. GANs have also been used to simulate 
rare stress conditions, generate phenotypic diversity, and 
explore genotype-phenotype spaces virtually. By enriching 
datasets with diverse synthetic images, GANs help mitigate 
over�tting and improve model generalizability across 
environments [22].

Applications in Crop Breeding and Trait Selection
AI-powered phenotyping is already being used in breeding 
pipelines to accelerate selection, improve genetic gain, and 
reduce breeding cycle time. Below are key application areas:

Disease detection and resistance screening
AI models trained on large image datasets can classify plant 
diseases with remarkable accuracy. Tools developed using 
CNNs and HSI have been successfully deployed to detect early 
signs of foliar diseases like wheat rust, soybean blight, and 
maize leaf spot. Early detection enables breeders to evaluate 
resistance without waiting for full symptom expression, 
increasing the selection accuracy. Moreover, hyperspectral 
imaging coupled with AI allows discrimination between 
di�erent pathogens based on spectral �ngerprints, even under 
overlapping symptoms [23].

Monitoring of growth and developmental stages
Phenological traits such as �owering time, maturity, and growth 
rate are crucial for climate adaptation. AI models analyze 
time-series data from UAVs or ground cameras to track 
developmental changes. Automated monitoring of growth 
curves allows breeders to assess trait stability across 
environments and select genotypes with optimal phenology. 
Additionally, AI can detect abnormalities in development, such 
as delayed �owering or asynchronous tillering, that may not be 
obvious in manual observation [24].

Structural trait measurement and biomass estimation
Accurate estimation of biomass, plant height, and canopy 
volume is critical in breeding for yield and stress tolerance. AI 
models, especially those trained on 3D LiDAR or UAV images, 
can estimate these traits non-destructively. In rice, maize, and 
sorghum, biomass estimation using AI has been correlated with 
�nal grain yield, making it a useful proxy for early-stage 
selection [25].

Root architecture analysis
Root traits like length, branching pattern, and angle are 
important for water and nutrient uptake but di�cult to 
phenotype. AI-powered segmentation and skeletonization 

techniques can extract these traits from rhizotron images or soil 
pro�le scans. �ese data inform breeding decisions for drought 
tolerance and e�cient resource use.

Conclusion
AI-powered phenotyping marks a transformative shi� in plant 
science and crop breeding, enabling researchers to analyze 
complex plant traits with unmatched speed, accuracy, and scale. 
By integrating arti�cial intelligence with advanced imaging 
technologies, such as drones, hyperspectral cameras, and 3D 
scanners, it signi�cantly reduces the time and labor associated 
with traditional manual phenotyping, resolving a key bottleneck 
in breeding pipelines.

 Deep learning models, especially convolutional neural 
networks (CNNs), vision transformers (ViTs), and generative 
approaches—have proven highly e�ective in extracting 
meaningful biological information from complex, 
high-dimensional datasets. �ese models excel under 
real-world conditions, handling variability, noise, and 
incomplete data to assess traits like disease presence, canopy 
structure, biomass, and root development in real time.

 A key advancement lies in integrating phenomic, genomic, 
and environmental data to support predictive breeding and 
improve genotype-by-environment interaction models. �is 
facilitates more accurate genomic selection, essential for 
addressing climate-induced stresses such as drought, salinity, 
and heat. Accessibility is also expanding, with a�ordable UAVs, 
open-source tools, and edge computing making AI-powered 
phenotyping feasible even for resource-constrained regions. 
�is democratization is vital for bridging yield gaps in 
smallholder agriculture.

 Ultimately, AI enhances, not replaces, the role of plant 
breeders. With collaborative, interdisciplinary e�orts and 
standardized frameworks, AI-powered phenotyping will drive 
more e�cient, resilient, and sustainable crop improvement 
globally.
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Crop improvement has always been fundamental to agricultural 
development and food security. However, the complexity and 
urgency of current agricultural challenges demand a paradigm 
shi� in how breeding programs are executed. With the global 
population projected to exceed 9.7 billion by 2050 and 
agricultural land and water resources becoming increasingly 
constrained, the demand for high-yielding, stress-tolerant, and 
climate-resilient crops has never been greater [1]. 
Compounding these demands are the unpredictable e�ects of 
climate change, including altered rainfall patterns, rising 
temperatures, and increased pest and disease pressures.

 While the advent of next-generation sequencing (NGS), 
marker-assisted selection (MAS), and genomic selection (GS) 
has accelerated the identi�cation of favorable alleles and genes, 
breeding success ultimately hinges on the accurate evaluation of 
plant phenotypes, the physical and physiological traits that 
result from genotype–environment interactions [2]. 
Phenotyping, however, remains a major bottleneck in crop 
improvement. Traditional methods of measuring plant traits, 
whether in greenhouses or �eld conditions, are typically slow, 
manual, and error-prone. Such limitations hinder the 
throughput and objectivity required for modern breeding 
programs, especially when screening thousands of genotypes 
across multiple environments [3].

 To address these limitations, the �eld of high-throughput 
phenotyping (HTP) has evolved, integrating remote sensing, 
sensor networks, robotics, and informatics to scale data 
acquisition. Yet, the full potential of HTP is being realized only 

now with the advent of arti�cial intelligence (AI), particularly 
deep learning. AI algorithms have the capacity to analyze large, 
complex, and noisy datasets with a high degree of precision, 
making them well-suited for automated trait extraction from 
diverse imaging modalities.

 Deep learning models, especially convolutional neural 
networks (CNNs), can learn intricate patterns from images 
without requiring manual feature engineering. �ese 
capabilities have enabled breakthroughs in automated detection 
of diseases, prediction of yield traits, classi�cation of growth 
stages, and even estimation of plant biomass [4]. Emerging 
technologies like vision transformers, generative adversarial 
networks (GANs), and graph neural networks (GNNs) are 
further expanding AI's potential in multi-modal and 
spatio-temporal phenotypic analysis [5].

 Moreover, AI’s synergy with modern imaging systems, such 
as hyperspectral sensors, LiDAR scanners, thermal cameras, 
and UAVs (unmanned aerial vehicles), has unlocked new 
frontiers in �eld-based phenotyping. �ese tools enable 
real-time monitoring of large breeding plots, capturing subtle 
physiological signals and dynamic developmental changes that 
are otherwise undetectable [6]. �is review presents a 
comprehensive overview of how AI and advanced imaging 
technologies are transforming crop phenotyping. It highlights 
the major platforms, models, and applications being deployed 
and how they are reshaping the e�ciency, scale, and accuracy of 
modern crop breeding.

Imaging Technologies in Modern Phenotyping
�e success of AI in phenotyping hinges on the quality, 
resolution, and diversity of image data obtained from multiple 
imaging platforms. Each imaging modality captures unique 
physiological, morphological, or biochemical aspects of plant 
development. �e integration of multiple imaging types across 
time points and spatial scales allows for the development of 
holistic phenotyping pipelines capable of tracking dynamic crop 
performance [7].

RGB imaging
RGB imaging is the foundation of most phenotyping systems 
due to its a�ordability and ease of use. Modern RGB cameras 
can capture high-resolution images under controlled or �eld 
conditions, allowing visual assessment of traits such as leaf 
number, plant height, color changes, and damage from pests or 
diseases [8]. With proper calibration and lighting conditions, 
RGB imaging has been shown to be e�ective in detecting early 
signs of leaf senescence, chlorosis, and necrosis. AI models, 
especially CNNs, are o�en trained on RGB datasets to classify 
disease symptoms, segment plant organs, or count structures 
such as �owers or seed pods [9].

Hyperspectral imaging (HSI)
Hyperspectral imaging captures data across hundreds of narrow 
spectral bands, typically ranging from the visible (400–700 nm) 
to near-infrared (700–1100 nm) and shortwave infrared 
regions. �is allows detailed characterization of plant 
biochemistry, such as pigment content, water status, and 
nutrient de�ciencies. Unlike RGB, which provides limited color 
information, HSI can detect subtle spectral signatures indicative 
of physiological stress even before visual symptoms appear [10].

 HSI is particularly valuable for identifying biotic and 
abiotic stress responses. AI models such as 1D and 3D CNNs, 
support vector machines (SVMs), and ensemble classi�ers have 
been trained to interpret hyperspectral data for classi�cation 
tasks. �ese models help identify disease infections (e.g., 
powdery mildew in wheat), nitrogen de�ciency, and water stress 
with high precision [11].

Thermal imaging
�ermal cameras detect infrared radiation emitted by plant 
surfaces, translating it into temperature maps. Since plant 
transpiration cools leaf surfaces, canopy temperature is o�en 
inversely related to stomatal conductance and water availability. 
�ermal imaging can thus detect drought stress or stomatal 
closure far earlier than visual cues can [12].

 �ermal data are commonly used to compute indices like 
the Crop Water Stress Index (CWSI) or used directly in AI 
models for trait prediction. For instance, deep neural networks 
have been trained on thermal data to assess heat tolerance in 
wheat and maize, identifying cultivars that maintain cooler 
canopies under heat stress [13].

Imaging and LiDAR
�ree-dimensional imaging provides detailed structural data on 
plant architecture. LiDAR systems emit laser pulses and 
measure the return time to reconstruct 3D point clouds. �ese 

models can assess traits such as plant height, canopy volume, 
internode spacing, and biomass [14]. 

 Stereo imaging and structured light systems are alternatives 
to LiDAR and are o�en used in indoor phenotyping platforms. 
�e output from 3D imaging can be further analyzed using 
computer vision algorithms or AI models for dynamic growth 
modeling. Studies using 3D LiDAR have been able to monitor 
changes in canopy structure over time to predict yield potential 
in rice and maize �elds [15].

UAV and satellite imaging
Unmanned Aerial Vehicles (UAVs), or drones, equipped with 
RGB, multispectral, or thermal sensors, o�er cost-e�ective, 
scalable phenotyping tools for �eld trials. �ese platforms allow 
the collection of high-resolution data over hundreds of plots 
within minutes [16]. Compared to ground-based systems, UAVs 
provide a bird’s-eye view that captures spatial variability in 
canopy structure, chlorophyll content, and stress gradients.
Satellites o�er similar advantages over larger scales, although 
with lower spatial resolution. Integrating satellite-based data 
with AI has shown promise in regional yield forecasting, crop 
mapping, and disease outbreak prediction [17]. In breeding 
contexts, UAVs are routinely used for canopy cover estimation, 
�owering detection, and growth monitoring using AI-based 
image segmentation and regression techniques [18].

Deep Learning Models for Image-Based Phenotyping
AI algorithms play a critical role in extracting and interpreting 
phenotypic features from diverse image data. Deep learning 
models, particularly convolutional neural networks (CNNs), 
excel at recognizing patterns in high-dimensional and noisy 
datasets, making them well-suited for real-world agricultural 
applications [19].

Convolutional neural networks (CNNs)
CNNs are among the most widely used deep learning 
architectures in plant phenotyping. �ey are composed of 
convolutional layers that automatically extract hierarchical 
features, starting from edges and textures to complex shapes and 
spatial patterns. CNNs eliminate the need for manual feature 
engineering, which is time-consuming and error-prone [20].

�ese models are used for:

• Disease detection: Classifying various plant diseases with 
high precision

• Segmentation tasks: Delineating leaves, roots, stems, or 
fruits from complex backgrounds

• Trait estimation: Predicting plant height, leaf area index, 
or biomass from aerial or ground images

Vision transformers and attention models
Transformers, initially designed for language processing, have 
recently been adapted for computer vision tasks. Vision 
transformers (ViTs) treat images as sequences of patches and 
use self-attention to model relationships between di�erent parts 
of an image.

In phenotyping, ViTs are particularly e�ective in:

• Integrating multi-source data (e.g., imagery, weather, genotype)

• Handling variable input resolutions

• Understanding global context within �eld-scale images

 Attention mechanisms enable the model to "focus" on 
relevant image regions, improving interpretability and 
performance in complex environments [21].

Generative adversarial networks (GANs) and synthetic 
data
GANs are used for creating synthetic images that resemble real 
plant images, helping in data augmentation for training robust 
models. �ey are particularly useful when real datasets are 
limited or imbalanced. GANs have also been used to simulate 
rare stress conditions, generate phenotypic diversity, and 
explore genotype-phenotype spaces virtually. By enriching 
datasets with diverse synthetic images, GANs help mitigate 
over�tting and improve model generalizability across 
environments [22].

Applications in Crop Breeding and Trait Selection
AI-powered phenotyping is already being used in breeding 
pipelines to accelerate selection, improve genetic gain, and 
reduce breeding cycle time. Below are key application areas:

Disease detection and resistance screening
AI models trained on large image datasets can classify plant 
diseases with remarkable accuracy. Tools developed using 
CNNs and HSI have been successfully deployed to detect early 
signs of foliar diseases like wheat rust, soybean blight, and 
maize leaf spot. Early detection enables breeders to evaluate 
resistance without waiting for full symptom expression, 
increasing the selection accuracy. Moreover, hyperspectral 
imaging coupled with AI allows discrimination between 
di�erent pathogens based on spectral �ngerprints, even under 
overlapping symptoms [23].

Monitoring of growth and developmental stages
Phenological traits such as �owering time, maturity, and growth 
rate are crucial for climate adaptation. AI models analyze 
time-series data from UAVs or ground cameras to track 
developmental changes. Automated monitoring of growth 
curves allows breeders to assess trait stability across 
environments and select genotypes with optimal phenology. 
Additionally, AI can detect abnormalities in development, such 
as delayed �owering or asynchronous tillering, that may not be 
obvious in manual observation [24].

Structural trait measurement and biomass estimation
Accurate estimation of biomass, plant height, and canopy 
volume is critical in breeding for yield and stress tolerance. AI 
models, especially those trained on 3D LiDAR or UAV images, 
can estimate these traits non-destructively. In rice, maize, and 
sorghum, biomass estimation using AI has been correlated with 
�nal grain yield, making it a useful proxy for early-stage 
selection [25].

Root architecture analysis
Root traits like length, branching pattern, and angle are 
important for water and nutrient uptake but di�cult to 
phenotype. AI-powered segmentation and skeletonization 

techniques can extract these traits from rhizotron images or soil 
pro�le scans. �ese data inform breeding decisions for drought 
tolerance and e�cient resource use.

Conclusion
AI-powered phenotyping marks a transformative shi� in plant 
science and crop breeding, enabling researchers to analyze 
complex plant traits with unmatched speed, accuracy, and scale. 
By integrating arti�cial intelligence with advanced imaging 
technologies, such as drones, hyperspectral cameras, and 3D 
scanners, it signi�cantly reduces the time and labor associated 
with traditional manual phenotyping, resolving a key bottleneck 
in breeding pipelines.

 Deep learning models, especially convolutional neural 
networks (CNNs), vision transformers (ViTs), and generative 
approaches—have proven highly e�ective in extracting 
meaningful biological information from complex, 
high-dimensional datasets. �ese models excel under 
real-world conditions, handling variability, noise, and 
incomplete data to assess traits like disease presence, canopy 
structure, biomass, and root development in real time.

 A key advancement lies in integrating phenomic, genomic, 
and environmental data to support predictive breeding and 
improve genotype-by-environment interaction models. �is 
facilitates more accurate genomic selection, essential for 
addressing climate-induced stresses such as drought, salinity, 
and heat. Accessibility is also expanding, with a�ordable UAVs, 
open-source tools, and edge computing making AI-powered 
phenotyping feasible even for resource-constrained regions. 
�is democratization is vital for bridging yield gaps in 
smallholder agriculture.

 Ultimately, AI enhances, not replaces, the role of plant 
breeders. With collaborative, interdisciplinary e�orts and 
standardized frameworks, AI-powered phenotyping will drive 
more e�cient, resilient, and sustainable crop improvement 
globally.
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